8 research outputs found

    Cognitive functioning in dyskinetic cerebral palsy: Its relation to motor function, communication and epilepsy

    Full text link
    Background: Cerebral palsy (CP) is a disorder of motor function often accompanied by cognitive impairment. There is a paucity of research focused on cognition in dyskinetic CP and on the potential effect of related factors. Aim: To describe the cognitive profile in dyskinetic CP and to assess its relationship with motor function and associated impairments. Method: Fifty-two subjects with dyskinetic CP (28 males, mean age 24 y 10 mo, SD 13 y) and 52 typically-developing controls (age- and gender-matched) completed a comprehensive neuropsychological assessment. Gross Motor Function Classification System (GMFCS), Communication Function Classification System (CFCS) and epilepsy were recorded. Cognitive performance was compared between control and CP groups, also according different levels of GMFCS. The relationship between cognition, CFCS and epilepsy was examined through partial correlation coefficients, controlling for GMFCS. Results: Dyskinetic CP participants performed worse than controls on all cognitive functions except for verbal memory. Milder cases (GMFCS I) only showed impairment in attention, visuoperception and visual memory. Participants with GMFCS II-III also showed impairment in language-related functions. Severe cases (GMFCS IV-V) showed impairment in intelligence and all specific cognitive functions but verbal memory. CFCS was associated with performance in receptive language functions. Epilepsy was related to performance in intelligence, visuospatial abilities, visual memory, grammar comprehension and learning. Conclusion: Cognitive performance in dyskinetic CP varies with the different levels of motor impairment, with more cognitive functions impaired as motor severity increases. This study also demonstrates the relationship between communication and epilepsy and cognitive functioning, even controlling for the effect of motor severity

    Executive function and general intellectual functioning in dyskinetic cerebral palsy: comparison with spastic cerebral palsy and typically developing controls

    Full text link
    Aim: To comprehensively describe intellectual and executive functioning (EF) in people with dyskinetic cerebral palsy (DCP), by comparing their performance with that of: 1) age and sex-matched typically developing controls (TDC); and 2) participants with spastic cerebral palsy (SCP) matched for age, sex, term/preterm and gross motor function classification system (GMFCS). Method: This cross sectional study was conducted by the University of Barcelona in collaboration with five institutions. Participants were people with DCP (n = 52; 24 females, median age 20.5 y: 5mo, interquartile range [IQR] = 13.75 y: 7mo; GMFCS I-V). As comparison groups, participants with SCP (n = 20; 10 females, median age = 20.5 y: 5.5mo, IQR = 13.75 y 9mo; GMFCS I-V) and TDC (n = 52; 24 females, median age = 20 y: 4mo, IQR = 12 y 7mo) were included. Intelligence and EF were assessed using common tests in all participants. Results: Both CP groups had lower intelligence than TDC and performed poorer in almost all EF tasks. Intelligence was higher in DCP than SCP (z = -2.51, p = 0.01). Participants with DCP also performed significantly better in goal-setting tasks (z = 2.27, p = 0.03) and information processing (z =-2.54, p = 0.01) than those with SCP. Conclusion: People with DCP present lower general intellectual functioning and poorer EF across multiple domains than typically developing controls. People with DCP have higher general intellectual functioning and better EF than people with SCP when levels of motor severity are similar

    White matter integrity in dyskinetic cerebral palsy: Relationship with intelligence quotient and executive function

    Full text link
    Background: Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. Aims: This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Patients and methods: Thirty-three participants with dyskinetic CP (mean +/- SD age: 24.42 +/- 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. Results: White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA compared to controls. Attentional control, goal setting and information processing did not correlate with WM microstructure in the CP group. Cognitive flexibility was associated with FA in regions known to contain connections with the frontal lobe (such as the superior longitudinal fasciculus and cingulum) as well as regions not known to contain tracts directly connected with the frontal lobe (such as the posterior corona radiata, posterior thalamic radiation, retrolenticular part of internal capsule, tapetum, body and splenium of corpus callosum). Conclusion: The widespread loss in the integrity of WM tissue is mainly located in the parietal lobe and related to IQ in dyskinetic CP. Unexpectedly, executive functions are only related with WM microstructure in regions containing fronto-cortical and posterior cortico-subcortical pathways, and not being specifically related to the state of fronto-striatal pathways which might be due to brain reorganization. Further studies of this nature may improve our understanding of the neurobiological bases of cognitive impairments after early brain insult

    Proxy-reported quality of life in adolescents and adults with dyskinetic cerebral palsy is associated with executive functions and cortical thickness

    Full text link
    Purpose: Quality of life (QOL) is a key outcome for people with cerebral palsy (CP), and executive functioning is an important predictor of QOL in other health-related conditions. Little is known about this association in CP or about its neural substrate. We aim to analyze the influence of executive functioning (including cognitive flexibility) as well as that of other psychological, motor, communication and socioeconomic variables on QOL and to identify neuroanatomical areas related to QOL in adolescents and adults with CP. Methods: Fifty subjects diagnosed with dyskinetic CP (mean age 25.96 years) were recruited. Their caregivers completed the primary caregiver proxy report version of the CP QOL-Teen questionnaire. Motor status, communication, IQ, four executive function domains, anxiety/depression and socioeconomic status were evaluated. Correlations and multiple linear regression models were used to relate CP QOL domains and total score to these variables. Thirty-six participants underwent an MRI assessment. Correlations were examined between cortical thickness and CP QOL total score and between cortical thickness and variables that might predict the CP QOL total score. Results: Executive functions predict scores in four domains of CP QOL (General well-being and participation, Communication and physical health, Family health and Feelings about functioning) in the regression model. Among the cognitive domains that comprise executive function, only cognitive flexibility measured in terms of performance on the Wisconsin card sorting test (WCST) predicts the CP QOL total score. Monthly income, fine motor functioning and communication ability predict scores on the domains Access to services and Family Health, Feelings about functioning and School well being, respectively. The clusters resulting from the correlation between cortical thickness and both CP QOL total score and WCST performance overlapped in the posterior cingulate and precuneus cortices. Conclusions: Cognitive flexibility predicts proxy report CP QOL-Teen total score in dyskinetic CP. This relationship has its anatomical correlate in the posterior cingulate and precuneus cortices

    Measuring intellectual ability in cerebral palsy: The comparison of three tests and their neuroimaging correlates

    Full text link
    Standard intelligence scales require both verbal and manipulative responses, making it difficult to use in cerebral palsy and leading to underestimate their actual performance. This study aims to compare three intelligence tests suitable for the heterogeneity of cerebral palsy in order to identify which one(s) could be more appropriate to use. Forty-four subjects with bilateral dyskinetic cerebral palsy (26 male, mean age 23 years) conducted the Raven's Coloured Progressive Matrices (RCPM), the Peabody Picture Vocabulary Test -3rd (PPVT-III) and the Wechsler Nonverbal Scale of Ability (WNV). Furthermore, a comprehensive neuropsychological battery and magnetic resonance imaging were assessed. The results show that PPVT-III gives limited information on cognitive performance and brain correlates, getting lower intelligence quotient scores. The WNV provides similar outcomes as RCPM, but cases with severe motor impairment were unable to perform it. Finally, the RCPM gives more comprehensive information on cognitive performance, comprising not only visual but also verbal functions. It is also sensitive to the structural state of the brain, being related to basal ganglia, thalamus and white matter areas such as superior longitudinal fasciculus. So, the RCPM may be considered a standardized easy-to-administer tool with great potential in both clinical and research fields of bilateral cerebral palsy

    Study protocol of a randomized controlled trial of home-based computerized executive function training for children with cerebral palsy

    Get PDF
    Background: Cerebral palsy (CP) is frequently associated with specific cognitive impairments, such as executive dysfunction which are related to participation and quality of life (QOL). The proposed study will examine whether a computerized executive function (EF) training programme could provide superior benefits for executive functioning, participation, QOL and brain plasticity, as compared to usual care. Methods: A single-blind randomized controlled trial (RCT) design will be performed. Thirty children with CP aged 8 to 12 years will participate in a home-based computerized multi-modal executive training programme (12 weeks, 5 days a week, 30 min a day training, total dose = 30 h). Thirty children with CP matched by age, sex, motor and intelligence quotient (IQ) will compose the waitlist group. Cognitive, behavioural, emotional, participation and QOL measures will be obtained at three time points: before, immediately after and 9 months after completing the training. Additionally, structural and functional (resting state) magnetic resonance images (MRI) will be obtained in a subsample of 15 children from each group. Outcomes between groups will be compared following standard principles for RCTs. Discussion: The study will test whether the cognitive training programme exerts a positive effect not only on neuropsychological and daily functioning of children with CP but also on other measures such as participation and QOL. We will also use brain MRI to test brain functional and structural changes after the intervention. If this on-line and home-based training programme proves effective, it could be a cost-effective intervention with short- and long-term effects on EF, participation or QOL in CP

    White matter integrity in dyskinetic cerebral palsy : Relationship with intelligence quotient and executive function

    No full text
    Altres ajuts: Generalitat de Catalunya (2014SGR98)Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Thirty-three participants with dyskinetic CP (mean ± SD age: 24.42 ± 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA compared to controls. Attentional control, goal setting and information processing did not correlate with WM microstructure in the CP group. Cognitive flexibility was associated with FA in regions known to contain connections with the frontal lobe (such as the superior longitudinal fasciculus and cingulum) as well as regions not known to contain tracts directly connected with the frontal lobe (such as the posterior corona radiata, posterior thalamic radiation, retrolenticular part of internal capsule, tapetum, body and splenium of corpus callosum). The widespread loss in the integrity of WM tissue is mainly located in the parietal lobe and related to IQ in dyskinetic CP. Unexpectedly, executive functions are only related with WM microstructure in regions containing fronto-cortical and posterior cortico-subcortical pathways, and not being specifically related to the state of fronto-striatal pathways which might be due to brain reorganization. Further studies of this nature may improve our understanding of the neurobiological bases of cognitive impairments after early brain insult

    Study protocol of a randomized controlled trial of home-based computerized executive function training for children with cerebral palsy

    No full text
    Background: Cerebral palsy (CP) is frequently associated with specific cognitive impairments, such as executive dysfunction which are related to participation and quality of life (QOL). The proposed study will examine whether a computerized executive function (EF) training programme could provide superior benefits for executive functioning, participation, QOL and brain plasticity, as compared to usual care. Methods: A single-blind randomized controlled trial (RCT) design will be performed. Thirty children with CP aged 8 to 12 years will participate in a home-based computerized multi-modal executive training programme (12 weeks, 5 days a week, 30 min a day training, total dose = 30 h). Thirty children with CP matched by age, sex, motor and intelligence quotient (IQ) will compose the waitlist group. Cognitive, behavioural, emotional, participation and QOL measures will be obtained at three time points: before, immediately after and 9 months after completing the training. Additionally, structural and functional (resting state) magnetic resonance images (MRI) will be obtained in a subsample of 15 children from each group. Outcomes between groups will be compared following standard principles for RCTs. Discussion: The study will test whether the cognitive training programme exerts a positive effect not only on neuropsychological and daily functioning of children with CP but also on other measures such as participation and QOL. We will also use brain MRI to test brain functional and structural changes after the intervention. If this on-line and home-based training programme proves effective, it could be a cost-effective intervention with short- and long-term effects on EF, participation or QOL in CP. Trial registration: ClinicalTrials.gov: NCT04025749. Registered 19 July 2019. Retrospectively registered
    corecore